Leaves decompositions in Euclidean spaces

نویسندگان

چکیده

We partly extend the localisation technique from convex geometry to multiple constraints setting. For a given 1-Lipschitz map u:Rn?Rm, m?n, we define and prove existence of partition Rn, up set Lebesgue measure zero, into maximal closed sets such that restriction u is an isometry on these sets. consider disintegration, with respect this partition, log-concave measure. for almost every dimension m, associated conditional log-concave. This result proven also in context curvature-dimension condition weighted Riemannian manifolds. partially confirms conjecture Klartag. Nous étendons en partie la de géométrie convexe pour plusieurs contraintes. Étant donnée application 1-lipschitzienne nous définissons et prouvons l'existence d'une dehors d'un ensemble négligeable, à ensembles convexes fermés maximaux tels que soit une isométrie sur ces ensembles. On considère désintégration, relativement cette mesure montrons presque chaque m-dimensionnelle conditionnelle associée est Ce résultat également prouvé dans le contexte courbure-dimension les variétés riemanniennes pondérées. Cela confirme

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

Berkovich Spaces Embed in Euclidean Spaces

Let K be a eld that is complete with respect to a nonarchimedean absolute value such that K has a countable dense subset. We prove that the Berkovich analyti cation V an of any d-dimensional quasi-projective scheme V over K embeds in R. If, moreover, the value group of K is dense in R>0 and V is a curve, then we describe the homeomorphism type of V an by using the theory of local dendrites.

متن کامل

Decompositions Involving Anick’s Spaces

The goal of this work is to continue the investigation of the Anick fibration and the associated spaces. Recall that this is a p-local fibration sequence: ΩS πn −→ S −→ T −→ ΩS where πn is a compression of the p th power map on ΩS. This fibration was first described for p > 5 as the culmination of a 270 page book [A]. In [AG], the authors described an H space structure for the fibration sequenc...

متن کامل

Homotopy Decompositions of Spaces

0.1. Why Do We Want to Decompose a Space? Basically the goal of mathematics is to classify certain objects. For instance, we are able to classify 2-dimensional manifolds. Then we are trying to classify 3-manifolds while Poincaré conjecture sounds difficult to be solved. In homotopy theory, a general question is how to classify spaces (up to homotopy). The general idea for classifying spaces is:...

متن کامل

On quasiplanes in Euclidean spaces

A variational inequality for the images of k-dimensional hyper-planes under quasiconformal maps of the n-dimensional Euclidean space is proved when 1 ≤ k ≤ n − 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2021

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2021.08.003